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Measurements of the pressure drop and flow rate were obtained for dilute solu- 
tions of polyethylene oxide flowing through beds of packed beads. When the 
velocity was sufficiently high, the pressure drop was above that for a Newtonian 
fluid of equal viscosity, often considerably above, and this viscoelastic effect was 
explored by varying the concentration and molecular weight of the polymer, by 
testing solutions over a wide range of flow rates, and by using several bead sizes. 
The non-Newtonian behaviour was most pronounced at  moderate flow rates; 
at  the highest velocities, the data were pseudo-Newtonian in character, i.e. the 
pressure drop still exceeded that for a Newtonian fluid, but was linearly related 
to the velocity. For some solutions, the large deviation from Newtonian values 
occurred over such a short range of flow rates that there was an interval in which 
the pressure drop decreased with velocity. It was not possible, therefore, to obtain 
steady-state measurements in this regime and a gap appears in the data curve of 
pressure vs. velocity. 

The pressure drop was monitored in steps along the test section, so that it was 
possible to detect molecular degradation of the solutions as they flowed through 
the porous media. In general, degradation was not extensive and the solutions 
became stably degraded by the midpoint of the test section. Degradation 
increased with velocity and, quite surprisingly, became more severe as the bead 
size increased. 

A visual examination of the flow field revealed that the streamline pattern for 
the polymer solutions was the same as that for water. The large non-Newtonian 
effects were therefore due to changes in the stress field, and in an effort to under- 
stand these effects, an analysis was carried out which examined how the stresses 
generated by each component of the deformation, i.e. by shear and pure strain, 
influence the pressure drop. This analysis, combined with a study of onset data, 
indicates that onset and the sudden large departures from Newtonian values are 
probably due to an interaction between extensional and shearing deformation, 
and that the reduced viscoelastic effect of higher flow rates may be due to the 
dominance of extensional stresses. 

1. Introduction 
Part of the current interest in dilute polymei solutions has been generated by 

the use of polymers to improve water-flooding in secondary oil recovery. In this 
process, water is injected underneath an oil reservoir to sweep the residual oil 
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from the porous formation upwards to the producing well. The greater the flow 
resistance of the water relative to the oil, the more efficient is the displacement 
process, and one means of increasing the viscosity of the water is to use soluble 
polymer additives. A good survey of field and laboratory studies of this method is 
included in a recent review article by Savins (1969) on non-Newtonian flow in 
porous media. 

A number of prior investigations have sought to understand the improved oil 
recovery by examining the properties of solutions of high-weight polymers and 
their effect on the flow resistance. The majority of these studies used concentrated 
polymer solutions and related the higher pressure drops to the increase in 
viscosity. For example, Christopher & Middleman (1965) used carboxymethyl 
cellulose and polyisobutylene at concentrations of 1-6 yo and correlated their 
data for flow through packed beads using the parameters of the power-law model 
of viscosity. For less concentrated solutions, the larger pressure drops can no 
longer be attributed solely to viscous effects because the increase may be an order 
of magnitude larger than the increase in viscosity. Consequently, elastic effects 
must also be taken into account, and changes in the flow are expected when the 
relaxation time of the elastic liquid is comparable to the characteristic time of the 
flow. This concept is supported by the experimental evidence of Sadowski (1965) 
and Marshall & Metzner (1967) for concentrated solutions. Dauben & Menzie 
(1 967) investigated non-Newtonian effects in porous media with polyethylene 
oxide solutions, ranging from dilute to moderately concentrated, and they too 
found pressure losses which were much higher than those predicted using 
Darcy’s law and the measured solution viscosity. However, they did not explain 
this anomaly in terms of viscoelastic properties, but related their data to  the pore 
size and viscous power-law parameters. It appears that only Jones & Maddock 
(1 969) have worked with strictly dilute solutions, viz., a t  concentrations 
sufficiently low that hydrodynamic interaction between macromolecules is 
negligible. They used four concentrations of polyacrylamide and one of sodium 
carboxymethyl cellulose, and were primarily interested in the onset of viscoelastic 
effects. In  particular, they examined the conditions under which the pressure- 
flow data of the solutions departed from the solvent data, and compared these 
conditions with those for the onset of drag reduction in turbulent pipe flow. 

The purpose of the present programme was to explore viscoelastic effects in 
porous media with very dilute solutions. The range of variables in Jones & 
Maddock’s experiments produced only slight deviations from Newtonian 
behaviour, and it was thought that much larger viscoelastic effects were possible 
under different conditions. More pronounced viscoelasticity, it was reasoned, 
would provide more knowledge about the rheology of dilute solutions and might 
lead to a better understanding of the mechanism by which polymer additives 
reduce drag in turbulent wall flows. Previous work with dilute solutions and 
submerged cylinders (James & Acosta 1970) had shown that viscoelastic effects 
are large and are related to molecular parameters; in order to fully explore non- 
Newtonian behaviour for flow through packed beads, the present experiment 
was designed to allow a substantial variation of the flow parameters, including the 
flow rate, bead size, polymer concentration and molecular weight. 
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FIGURE 1. Histogram for a sample of 30 glass beads. The average diameter 
was determined from this histogram to be 0.022 om. 
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2. The experimental method 
The experiment essentially consisted of driving aqueous solutions of poly- 

ethylene oxide through columns of packed glass beads, and measuring the 
pressure drop and flow rate. The beads were a commercial productt normally used 
for reflecting surfaces and were sorted with U.S. Standard sieves to produce three 
sizes with narrow distributions. For each size, a sample of the population was 
examined under a microscope to measure the distribution of diameters and 
consequently to determine the average. The mean diameters determined by this 
technique were 0.011, 0.022 and 0.045 em, and the distribution for a typical 
sample is shown in figure 1. The microscopic examination also revealed that about 
86 yo of the beads were true spheres, while the remainder were generally double or 
triple beads. 

The beads were packed in Plexiglas tubes having a series of pressure taps, as 
illustrated in figure 2. Three such test cells were made in order to house beads of 
each of the three sizes, and the void fractions were measured to be 0,372, 0.377 
and 0.368, in order of increasing bead size. The five pressure taps were installed to 
monitor the pressure drop along the length of the test section and thus to check 
the constancy of fluid and matrix properties. Pressure differences between 
adjacent taps were measured by a calibrated diaphragm-type transducer. The 
experimental fluids were driven through the test sections by an elevated, and 
sometimes pressurized, constant-head tank, and the discharge at the exit was 
collected to determine the flow rate. In  order to validate the experimental 
technique, the first fluid tested was Newtonian, namely plain water. The results 
are plotted in figure 3 along with the modified Ergun equation, which represents 
an average of the considerable data of previous investigations for Newtonian 
fluids (Bird, Stewart & Lightfoot 1964). For this graph and others that follow, the 

-f From Flexolite of Canada Ltd. 
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FIGURE 3. Friction-factor data for water; f and Re are the Ergun co-ordinates, defined in the 
text. ---, modified Ergun equation f = 180/Re+ 1.75, the curve fitted through previous 
results for Newtonian fluids (Bird et al. 1964). Bead diameter (mm): 0, 0.45; a, 0.22; 
0, 0.11. 
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Concentration Kinematic 
Polymer properties C viscosity 

Polyox a (P.P*m. at 25 "C 
grade [rl BlU K by weight) v (CS) 

WSR-205 4.7 9 . 4 ~  105 0.47 30 
60 

120 
240 
480 

WSR-301 15 4 . 2 ~  lo6 0.40 10 
20 
40 
80 

160 

0.904 
0.918 
0.942 
0.998 
1.11 

0.908 
0.919 
0.944 
1.00 
1.13 

FRA 29 9 . 7 ~  106 0.0 6 0.905 
12 0.918 
24 0.956 
48 1.03 
96 1.13 

TABLE 1. Description of the polymer solutions tested in the porous media 

pressure and flow-rate measurements are presented in t.erms of the Ergun (1 952) 
co-ordinates 

f = p Ap De3/G2L( 1 - c), Re = DG/p( 1 - E ) ,  

where Ap is the pressure drop (corrected for the elevation difference between 
pressure taps) over a length L, D is the bead diameter, e the void fraction, G the 
mass flow rate per unit area, p the fluid viscosity, and p the density. The good 
agreement of the present data with the modified Ergun equation in figure 3 is 
reassuring evidence of the reliability of our experimental system. 

Dilute aqueous solutions of polyethylene oxide were then tested in the flow 
apparatus. This particular polymer was selected because it produced highly 
elastic solutions and because the relationship between its intrinsic viscosity [y] 
and weight-average molecular weight J!& is known from Shin's (1965) correlation: 
[7] = 1.03 x 10-4ML78. Consequently the molecular weight of a sample was 
determined by finding [7] from viscometric measurements, which were made with 
Cannon-Fenske bulb viscometers. Three grades of commercially available 
Polyoxt where chosen, and for each grade various concentrations were tested to 
provide a range of viscoelastic behaviour. All concentrations were easiIy in the 
dilute regime since the product [y] c was 0.3 a t  most, where cis the concentration. 
The details of the polymer solutions are given in table 1. 

The polymer solutions listed in this table were too dilute to determine their 
intrinsic viscosity, and thus additional solutions of higher concentration were 
prepared for each grade. The viscometric data for one of the grades, WSR-301, 
are presented in figure 4 as an example. This plot shows the expected linear 

t Trade name of polyethylene oxide produced by the Union Carbide Co. 
47 F L M  70 
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FIGURE 4. Viscometric data for WSR-301 solutions. From this graph the intrinisic viscosity 
and Huggins constant were found to be 15 dl/g and 0.4 respectively. T = 25 "C. , solutions 
prepared for intrinsic-viscosity analysis; 0, solutions used in porous-media tests. 
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FIGURE 5. Friction-factor data for Polyox WSR-205 solutions. (a) 0.011 ern beads, 
( b )  0.022cm beads, (c) 0.045 em beads. -*-, Newtonian data. 
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FIGURE 6. Friction-factor data for Polyox WSR-301 solutions. (a)  0.011 cm beads, 
( b )  0.022 cm beads, (c) 0.045 cm beads. ---, Newtonian data. 
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relationship between the reduced viscosity (v - vs)/vsc and the concentration 
c ,  where v and v, are the solution and solvent viscosities respectively. [r] and 
Huggins’ constant K were found from the equation of the straight line drawn 
through the data, i.e. from (v- v,)/v,c = [r] + K[qI2c; for the WSR-301 data in 
figure 4, these values were 15dl/g and 0.40. Similar graphs for WSR-205 and 
FRA yielded the results listed in table 1; the FRA value of 0.0 for K is far 
removed from the usual values of 0-3-0.4, but is consistent with previous measure- 
ments made in our laboratory for this grade of Polyox. 

Measurements of the flow rate and pressure drop in the three porous media 
were recorded for all the solutions listed in table I. Unlike the Newtonian case, 
the pressure drop between adjacent pairs of taps was not always constant but 
usually decreased in the flow direction. This behaviour was apparently due to 
polymer degradation - the scission of molecular bonds by high straining - and 
viscometric tests of the effluent confirmed a corresponding decrease in the 
molecular weight. Similar behaviour has sometimes been attributed to plugging 
and adsorption of polymeric material on solid surfaces, though generally not for 
the pore sizes and concentration range encountered in the present experiments 
(see, for example, Sadowski, 1965; Mungan, Smith & Thompson 1966). Since the 
decrease in pressure drop depended on the velocity in our case and since subse- 

47-2 
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FIGURE 7 .  Friction-factor data for Polyox FRA solutiofis. (a )  0.011 ern beads, 
(6) 0.022 cm beads, (c) 0.045cin beads. ---, Newtonian data. 
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quent runs with water indicated no increase in permeability, it appears that the 
anomaly was in fact due to degradation. The amount of degradation, judging by 
the change in pressure drop between the first and last pairs of taps, depended on 
the concentration, flow rate and bead size. For the majority of conditions the 
decrease in pressure drop was 10 % or less, but for some cases, particularly for the 
largest beads, the viscoelastic effect was substantially reduced and sometimes 
barely perceptible. A more detailed study of degradation appears in a subsequent 
section of this paper. 

When degradation occurred, the average molecular weight of the polymer was 
lowered. I n  order to present results which correspond as closely as possible to the 
solution properties in table 1, the friction-factor data are based on the pressure 
drop between the first two taps, i.e. the two closest to the inlet. The results so 
obtained are plotted in figures 5-7, where the Ergun co-ordinates are again 
employed for ease of comparison with equivalent Newtonian fluids. 
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3. Discussion of results 
Figures 5-7 show that the data at  sufficiently low Reynolds numbers lie on the 

Newtonian line, thereby confirming that the polymer solutions behave like 
Newtonian fluids in this regime. This is an expected result since the deformation 
rates are low under these conditions and consequently the induced elasticity is too 
small to affect the viscosity-dominated flow. At larger Reynolds numbers, the 
polymer data are highly non-Newtonian; indeed, figure 7 shows that the friction 
factor is up to 40 times higher than the Newtonian value, an effect which is due 
purely to fluid elasticity since any contribution from increased viscosity is already 
accounted for in the Reycolds number (it should be remembered that the viscosity 
in Re is that of the solution and not the solvent). The data suggest that even larger 
pressure drops are possible with higher concentrations and such information 
would be desirable for practical applications. However, the present investigation 
was limited to dilute solutions and hence did not explore the conditions for 
maximum flow resistance. The extent to which the present data diverge from 
Newtonian values is comparable to that reported by previous investigators. 
Daubeii & Menzie (1967), for example, also used Polyox solutions and found 
friction ratios as high as 35; their experimental conditions, however, were 
different since their beads and velocities were smaller and their solutions much 
more concentrated, the viscosityranging from 1.6 to 100 cP. Similarly, Marshall & 
Metzner (1967) reported ratios as high as 80 using moderately concentrated 
solutions of polyacrylamide and beads comparable in size to our smallest. 

Some of the curves drawn through the data in figures 6 and 7 contain segments 
which are &shed; these designate regions in which steady-state measurements of 
pressure and flow rate could not be obtained. This unexpected feature of the 
flow deserves separate attention and is therefore discussed later, in $7. 

4. Degradation 
Of all clrag-reducing polymers, Polyox is probably the most susceptible to 

degradation, and some insight into it,s nature was possible in the present work 
because the pressure drop was monitored in steps along the test section. From 
such measurements, it was possible to find or estimate the pressure drop for 
a stably degraded solution, i.e., a solution which, for a given set of flow conditions, 
had reached the full extent of its degradation and would degrade no further. I n  
most cases, the pressure drop did not change after the first interval or two, and 
consequently the flow data for the stably degraded solutions were readily found 
from the last two intervals. In  cases where the drop had not reached a constant 
value even by the last section, it was assumed that the deterioration of the 
solution was exponential, and the asymptotic value for the pressure drop was 
estimated by plotting the four available Ap’s on semi-logarithmic graph paper. 
In  this way, data for all solutions in the stably degraded state were obtained, and 
by comparing these values with those from the first interval, where the solutions 
were in the ‘fresh’ or minimally degraded state, it was possible to analyse the 
results for the causes and effects of degradation. 
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The most interesting characteristic which emerged was that degrad a t‘ 1011 

increased as the bead size increased. With the 0-045cm beads, the molecular 
scission was sometimes so extensive that by the end of the test section the results 
were almost the same as with water, especially for the first three concentrations 
of each grade a t  the lower velocities. In  contrast to this near 100 yo deterioration, 
the same fluid at the same velocity usually suffered about 30 Yo degradation in the 
0.022 ern bead matrix and less than 5 % with the 0.011 em beads. 

A further examination of the two sets of data revealed that, when degradation 
began at  mid-range flow rates, the onset velocity was virtually independent of the 
polymer concentration. Moreover, it was found that, for various solutions of a 
given gradc in a particular matrix, the degree of degradation was not influenced 
significantly by the concentration. These findings agree with the generally-held 
idea that the breaking of a molecular bond depends on the flow field and not on 
the number of molecules present (provided, of course, that they are not entangled). 
It is expected, therefore, that the onset and degree of degradation are functions 
of the strain rate, which is proportional to V / D ,  where V = G/p. The data show 
that degradation generally increased with velocity (as shown in figure 13, for 
example), which is physically reasonable, but the results reported in the  preceding 
paragraph establish that degradation also increased with bead diameter. Renee 
VID cannot be the controlling parameter. In  essence, then, our observations 
support the idea that degradation increases with velocity and is independent of 
the concentration, but we cannot explain the apprently antithetical finding that 
degradation increases with the bead size. 

5. Flow visualization 
The large flow resistance of the dilute polymer solutions was obviously due 

to ‘viscoelastic effects ’, but this phrase does not readily explain the basic 
mechanism. An understanding of this effect is all the more necessary when it is 
realized that the loss in energy must be due to viscous dissipation, and that the 
dissipation for polymer solutions is up to forty times higher than that for water 
while the steady-shear viscosity is, at  most, only 30% greater. One way of 
explaining this is to speculate that the flow pattern must be different, radically 
different in fact, in order for so much energy to be consumed. Since viscoelastic 
fluids often generate secondary flows (the vortex ring upstream of an orifice, for 
example), it was thought that the large resistance might be caused by considerable 
vortex motion within the cavities of the porous medium. To find out for certain, 
a flow-visualization study was undertaken. 

Initially, an attempt was made to visualize the flow in the circular test cells, 
by looking at the flow next to the tube wall, but this proved more frustrating 
than fruitful because of problems with frontal lighting. In  order to allow back- 
lighting and to provide a simpler flow field, arectangular test cell was constructed, 
designed to contain two layers of the largest (0.045 em) beads. The new test cell 
had a cross-section 5.0 x 0.075 em and had open manometers located a t  the 
entrance and exit to  determine the pressure drop along the 7-5 em length. The 
streamlines were made visible by suspending 3Opm mica particles in the fluid, 
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FIGURE 8. Flow visualization. The porous medium for this study consisted of two layers of 
beads sandwiched between lucite sheets, and the flow within t,he cavities was viewed with 
the aid of a microscope. 

and mere viewed through a microscope. A sketch showing the arrangement of the 
experimental equipment is provided in figure 8. A 100p.p.m. FRA solution was 
tested a t  Reynolds numbers of 0.3 and 1.0, and the corresponding pressure drops 
were found to be 3 and 10 times that for water. The flow within the cavities was 
closely examined for water and the polymer solution, and for both fluids a t  both 
flow rates, the paths traced out by the illuminat,ed mica flakes were the same. 

The simple conclusion is that Newtonian fluids and dilute polymer solutions 
have similar streamline patterns when flowing through a porous medium. The 
explanation for the increased energy dissipation does not lie therefore in any 
changes in the flow pattern but rather in changes in the stress field due to  
differences in fluid rheology. Polymer solutions are known to produce normal 
stresses a t  high rates of deformation, and this nonlinear rheology must somehow 
be related to the observed anomalies in the pressure drop. I n  an attempt to  
understand this relationship, the deformation field and the corresponding non- 
Newtonian stresses are examined in the next section. 
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6. Non-Newtonian mechanics 
In  this section we shall attempt to analyse in a qualitative way how induced 

non-Newtonian stresses might change the pressure drop, and to examine the 
onset of non-Newtonian behaviour. From the combination of these studies, the 
mechanisms responsible for the observed effects become clearer. 

6.1. Deformation and stresses 

The first step in the analysis of the deformation field and the consequent, induced 
stresses is an examination of the geometry of the flow passages. Since the media in 
the present experiments were tightly packed random arrangements of nearly 
uniform beads, the flow channels were quite irregular. I n  order to simplify the 
geometry without affecting the essential character of the medium, a more orderly 
arrangement will be studied: namely, closest packing of uniform spheres. The 
void fraction for this matrix is 0.26, compared with 0.37 for the test sect,ion ( 5  2 ) ,  
which means that any values introduced in the following paragraphs might be 
affected, but since the values are basically in terms of orders of magnitude, no 
real adjustment is required. A single layer of closest packed beads is shown in 
figure 9 (a) ,  while in figure 9 ( b )  there are two layers with the underneath one 
darkened for visual contrast. Prom figure 9 (a )  it  is apparent that the openings 
for the fluid are all tricuspid in shape and figure 9 ( b )  shows that these openings 
lead to two distinct types of flow channels, equal in number. In  the case of the 
first, designated type A ,  the fluid passes through the tricuspid opening, impinges 
on a sphere in the next layer and then flows out through three equally spaced 
openings. A two-dimensional schematic drawing of the flow in this cavity is given 
in figure 9 (c), which is an elevation view if figure 9 ( b )  is the plan view. For flow 
through the other type of passage, denoted by B, the fluid enters a spacious 
cavity and then leaves through a tricuspid opening in the bottom. As shown in 
the corresponding two-dimensional schematic drawing, figure 9 ( d ) ,  there are side 
ports for entry and exit as well, but little flow will pass through these €or a pres- 
sure gradient perpendicular to the layers of beads. (If the pressure gradient is 
oblique- in the flow-visualization test section,for example, it  is perpendicular- the 
flow directions may differ from those in figure 9; but the cavity geometry is un- 
changed, and thus the basic motions considered here are the same.) In  a type A 
cavity, the cross-sectional area of the flow does not vary significantly along the 
channels and consequently the deformation in these cavities is essentially shear- 
ing. In  type B, however, the large interior means that extension and compression 
are also components of the deformation, in addition to shearing. Since the type B 
cavities offer much less resistance they carry most of the flow and are, therefore, 
the more important in determining the pressure losses through the medium. 
Accordingly, the subsequent analysis will deal only with these cavities. 

We now examine the non-Newtonian stresses generated by each component of 
the deformation, that is, by shear and by pure strain, and find their separate 
effects on the pressure drop. It is readily acknowledged that the correct stress 
field cannot be found by such a decomposition, but the answers obtained do 
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(4 (b) (4 (4 
FIGURE 9. Some geometrical aspects of closest packed beads. ( a )  A single layer of beads; the 
fluid faces an array of tricuspid openings. ( b )  With a second layer positioned underneath 
(darkened for pictorial purposes), two distinct types of cavities are evident, designated 
A and B. (c) A schematic drawing of a type A cavity. (d) A schematic drawing of a type 
B acvity. 
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FIGURE 10. Normal stresses in shear. (a) For simple shearing in the 1 direction, i.e. U ,  oc z2, 
a normal stress ull is produced in the shearing direction. ( b )  When a fluid element is sheared 
on a curved surface, the normal stress acts as a hoop stress. (c) The normal stresses shown 
here are those components due only t o  the unsteadiness of the shear. The dashed arrows 
indicate the consequent stresses exerted on the wall. 

appear useful in shedding some light on the fundamental mechanics of the 
problem. Simple shearing is considered first. 

For a Newtonian fluid the only stresses are tangential, but for a polymer 
solution, a normal stress is induced in the shearing direction as well, as shown in 
figure lO(a). Normal stresses are induced on the other faces too, but these are 
generally smaller and for dilute solutions are negligible for shear rates up to 
1045-1. For steady shear, the ratio of the normal stress to the shear stress is 77, 
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where y is the shear rate and 7 the fluid relaxation time, and this formula is valid 
for y up to O(T-l) .  At higher shear rates, the ratio falls off, and so the normal 
stress is a maximum of 10 times the shear stress. The effect of the normal 
stress on the pressure drop is found by studying flow through a two-dimensional 
convergent-divergent channel, for the force exerted on the walls will be a measure 
of the drag force on spheres in a three-dimensional flow. On a curved surface, the 
normal stress acts as a hoop stress as shown in figure iO(b). When the channel is 
symmetrical, the shear rate is the same at points equidistant upstream and 
downstream from the midpoint (throat), so that there is no net force exerted on 
the walls. However, when the shear is unsteady, as it is in an expansion or con- 
traction, the normal stress is augmented above its steady-shear value when the 
shear rate is increasing and diminished when it is decreasing. The amount of 
augmentation is small, as shown by the molecular model or from constitutive 
equations based on the model, for the maximum amplification factor is 2 for the 
extreme case of a step increase in shear. This component of the stress, viz., that 
due to unsteadiness alone, is shown in figure 10 (c) : the arrows indicate that it is 
positive on the upstream side and negative on the downstream side, so that the 
net effect is to increase the drag on the surface (and, therefore, increase the 
pressure drop). The extent of the increase may be estimated by assuming any 
reasonable velocity profile extending outwards from the surface, and by doing 
so it was found that the non-Newtonian effect has the same order of magnitude 
as the Newtonian component. Consequently the increase in pressure loss due to 
shear effects only is O( 1). 

In  a similar way, the effect of pure straining may be examined. By pure 
straining is meant deformation in which there is no rotation and no shear, so that, 
if the flow is again simplified to two dimensions, the streamlines are necessarily 
hyperbolas.-f During this type of deformation, rectangular elements remain 
rectangular as shown in figure 11 (a) .  The stresses indicated on the element 
surfaces are the components due to the elastic or non-Newtonian character of the 
fluid, viz., these stresses are over and above those accounted for by viscosity. The 
component in the streamwise direction may be very large; in fact, the Rouse- 
Zimm molecular model or constitutive relations of the Maxwell type predict that 
this particular stress behaves like (1 - 2 y - l .  The actual stress does not become 
unbounded as the shear rate approaches ( 2 ~ ) - l  of course, but experiments have 
shown that its magnitudes are indeed large (Metzner & Metzner 1970). To deter- 
mine the effect of these stresses, the convergent-divergent channel is assumed to 
have a form such that the deformation of the fluid within is always pure strain. 
This means that the channel walls are segments of hyperbolas, as shown in 
figure 11 (b ) ,  and that the fluid is imagined to slip along these surfaces, say over 
a very thin boundary layer. In  this case, it is convenient to consider triangular 
fluid elements, with the oblique face tangential to the wall. For the element shown 
on the upstream side in figure 11 (b) ,  the stresses on the perpendicular faces are 
those for pure extension as depicted in figure 1 I (a). I n  the absence of inertial 

In order that the vorticity au/ay-av/ax and the shear rate &~/i?y+i?v/i3x be zero, 
u = u(z.)andv = u(y).Furthermore, tosatisfycontinuity,u = azandu = -uy(u = constant). 
in which case the streamIines are hyperbolas. 
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FIGURE 11. Normal stress in pure strain. (a )  The deformation of a rectangular element 
during pure strain. The arrows indicate non-Newtonian stresses, i.e. stresses over and above 
those due to viscosity alone. ( 6 )  The balance of stresses on a triangular element, adjacent to 
the wall, in a channel designed such that the fluid first undergoes pure extension and then 
pure compression. As in the previous figure, the dashed arrows represent the stresses exerted 
by the fluid on the wall. 

effects, the stress on the oblique face must balance the other two, and conse- 
quently the stress exerted by the fluid on the wall is in the direction indicated by 
the dashed arrow. The same type of reasoning can be applied to an element, on 
the upstream wall, undergoing pure compression. I n  this case, the directions of 
the normal stresses are reversed and the stress exerted on the wall is again shown 
by a dashed arrow. The direction of the dashed arrows demonstrates that the 
effect of pure straining is to produce a drag force whose direction is opposite to the 
streaming direction, which is equivalent to reducing the pressure drop. This 
startling result appears contrary to intuition, but the physics do make sense when 
it is remembered that the flow was idealized to suppress the effects of shear. The 
context for this particular finding will become apparent and easier to discuss once 
the onset of non-Newtonian behaviour has been examined. 

6.2 .  Onset 

The onset of non-Newtonian behaviour in figures 5-7 may easily be identified in 
many instances. Some general conclusions about onset were found from the data, 
and then these results were combined with an analysis of flow past closest packed 
spheres to yield estimates of the fluid deformation rate at onset. 

From figures 5-7, the onset Reynolds number Re, was found or approximated 
for over half the cases, and these values were used t o  compute the onset velocity 
V, = (1 - 6 )  v Re,/D. The quantity V was introduced earlier and is equal t o  G/p 
or to &/A, where Q is the flow rate and A the total cross-sectional area of the flow. 
V is sometimes termed the superficial velocity, but is a poor measure of fluid 
speeds in the matrix since it is equivalent to the mean velocity if there were no 
beads present. The ratio V / D  therefore underestimates the strain rate but is 
directly related to it. This relationship will be found in subsequent paragraphs, 
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WSR-205 
cone. 

30 
60 

120 
240 
480 

(P.P.rn. ) 

Bead size (em) WSR-301 Bead size (cm) 
(--------, cone. ,pA-, 

0.011 0.022 0.045 (p.p.rn.) 0.011 0.022 0.045 

7.7 5.5 12.1 10 3.3 3.0 3.9 
6.4 5-5 9.9 20 2-1 2.0 3.9 
4.2 3.8 6.8 40 1.7 1.8 - 

3.3 3.0 2.9 80 1.2 1.2 - 
3.1 2.6 2.2  160 0.7 0.9 - 

FRA Bead size (em) 
r-J--- 

6 1.2 1.7 
12 0.9 0.9 
24 1.0 - 
48 0.55 - 

(p.p.m.) 0.011 0.022 

96 0.41 0.20 

TABLE 2. The onset of non-Newtonian behaviour. Values of V,/D (s-l) 

(4 (b) (4 

FIGURE 12. ( a )  The flow through a tricuspid opening is considered comparable to flow 
through a tube which just fits the opening and carries nearly the same flow rate. The tube 
diameter d is (cosec 30" - 1) D. ( b )  Aschematic drawing to show the largest sphere which just 
fits a type B cavity; the sphere diameter A is found to be ( 4 2  - 1) D. ( c )  The flow through a 
type B cavity is assumed to be comparable to flow through a circular non-uniform channel 
having the dimensions shown. 

but meanwhile it is useful to examine the available onset values V,/D for they are 
readily found from the experimental data and provide qualitative information. 
These data are given in table 2 and show that V,/D is roughly constant for a given 
fluid; that is, the variation in V,/D is no larger than the error in estimating Re, 
from the graphs, and is much smaller than the fourfoldvariationin D. These data, 
therefore, verify the expectation that onset occurs when the strain rate is 
sufficiently large. The results also indicate that, for a series of solutions of a 
particular grade and a particular bead size, the onset shear rate decreases as the 
concentration increases. It might be thought that V,/D should be constant, or 
nearly so, since the present solutions were reasonably dilute. Yet of the great 
variety of experiments conducted with Polyox solutions, very few have shown 
concentration-independent onset behaviour in the dilute regime. This variation is 
probably due to the broad distribution of molecular weights in commercial 
Polyox samples. 

In  attempting to establish reliable values for the actual strain rates, it is first 
noted that the deformation rate varies considerably throughout the flow channels 
and generally consists of both shear and pure strain. Accordingly, our efforts here 
are directed to finding the maximum amplitude of each component at a given 
flow rate. Again, attention is focused on the type B cavities and, as before, shear 
is considered first. This component is largest where the cross-section of the flow 
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is smallest, namely in the tricuspid opening described earlier and shown again 
in figure 12 (a). The maximum rate of shearing occurs a t  the wall and is estimated 
by finding the equivalent wall shear rate in a tube which just fits the opening and 
which carries most of the flow passing through this opening, say 90 %. Since little 
flow passes through type A cavities, the flow carried by the tubes is about three- 
quarters of the total, the fraction hereafter denoted by k.  The mean velocity V, 
in the tube is related to the superficial velocity V by the ratio of the tube area 
Hnd2 to the area of the diamond shown in figure 12 (a) (the diamond is the smallest 
subdivision of the entire cross-sectional area which contains two tricuspid 
openings) ; since the area of the diamond is 3D2 4 3 ,  by continuity 

k243 D 2v .  K=&) 
The shear rate a t  the tube wall is STiJd, which is assumed to be equivalent to the 
maximum rate of shear ysh in the porous medium; accordingly, after substituting 
d = (cosec 30'- 1 )  D, 

Since the onset values of V / D  in table 2 are O(1) s-l, the onset values for the shear 
rate are estimated to be O( lo3) s-l. 

When finding the corresponding values for the pure-strain component of the 
deformation, the problem becomes one of estimating the rate of extension (or 
compression) for flow through a type B cavity. Again the irregular geometry is 
simplified, in this case by assuming that the most characteristic dimension of the 
interior is the diameter A ofa sphere which just fills the cavity, as shown schemati- 
cally in figure 12 (b) .  The straining of fluid in the cavity is, therefore, considered 
to be comparable to that for an rtxisymmetric channel of maximum diameter A 
and minimum diameter d,  as illustrated in figure 12 (c). As before, it is presumed 
that a fraction k of the total flow rate passes through the channel, and because of 
the low Reynolds numbers throughout, a parabolic velocity profile is assumed a t  
the maximal and minimal cross-sections. The maximum rate of (pure) strain yst 
occurs along the centre-line and is, therefore, estimated by finding the difference 
in centre-line velocity over the distance 1, and dividing by 1. Since the centre-line 
velocity is twice the mean and since the latter was found for the minimum cross- 
section in the preceding paragraph, 

k 4 J 3  D 
yst = - 7ll [(-J-(;)2] P. 

For closest packing of spheres, it is straightforward to show that A = ( 4 2  - 1) D 
and 1 = D / , / 6 ,  so that 

[(cosec30°- 1)-2-- ( 4 2 -  1)-2] 
k12 J2 

yst = - 
?T 

Since is O( 1) s-1, the maximum rate of extension or compression a t  onset is 
O( 102) s-1. 
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These estimates of the deformation rates in shear and pure strain become more 
meaningful when considered along with the characteristic time for a fluid, namely 
the largest Rouse relaxation time rl. These times, computed from 

r1 I- ~TJ,[TJ]  M/nZRT 

(Rouse 1953), are 0-00010, 0.0014 and 0.0060s for our WSR-205, WSR-301 and 
FRA grades. Using these times with the preceding formulae for Ysh and yst, and 
with the onset datain table 2, it is found that the dimensionless shear rate yshT1 a t  
onset is O( 10) and the dimensionless pure strain rate yshT1 is O( 1). The discussion 
in $6.1 indicated that these are just the orders of magnitude when each com- 
ponent can be expected to produce departure from Newtonian behaviour. The 
departure, however, is more probably due to extension than shear. As analysed 
earlier, non-Newtonian shear cannot affect the pressure drop by more than O( l ) ,  
whereas the effects due to extension may be much larger, and hence more corn- 
patible with the observed effects, because of the (1 - 2y,+~,)-l behaviour. It is not 
yet clear, though, just how the extensional stresses act to increase the drag force 
on the beads. From the results of our analyses in 3 6.1, it now becomes apparent 
that the shear and pure strain must be coupled such that the extensional stresses 
produce large tangential stresses on the solid surfaces. Also, it is not quite clear 
what mechanism is responsible for the decline in non-Newtonian deviation at  
higher flow rates. Apartial answer is suggested, of course, by the analysis in $6 .1  
of the effects of pure strain: it may be that, a t  the higher deformation rates, the 
normal stresses produced by pure strain become more and more dominant in the 
stress field and bring about the result predicted in $ 6. I ,  namely a reduction of 
the drag force. These ideas are of course no more than conjecture; yet until a more 
complete analysis is available, they provide a plausible means of explaining the 
observedresults, consistent with the known mechanics of dilute polymer solutions. 

7. A velocity gap 
As mentioned earlier, the dashed curves in figures 6 and 7 denote regions in 

which it was impossible to achieve a steady flow. This aspect of the work was not 
fully explored, but the present data are sufficient to establish the essential 
characteristics. The phenomenon can be understood most readily when the flow 
data are plotted in dimensional co-ordinates, rather than as dimensionless groups 
as in figures 6 and 7. As an illustration, the results for three FRA solutions are 
plotted in this way in figure 13. The figure contains points for stably degraded as 
well as fresh solutions, partly to provide some degradation data and partly to 
demonstrate that the phenomenon can occur with both types of solution. The 
characteristic behaviour can be seen from the figure: a sharp rise in pressure with 
velocity a t  low flow rates, a maximum viscoelastic effect and a fairly quick return 
to  near-Newtonian values a t  higher flow rates; that is, the non-Newtonian 
behaviour occurs over a relatively narrow range of flow rates. For all three 
solut'ions in figure 13, the flow rate rose slowly as the driving pressure was 
increased, up to a velocity of 0.08 cmls. For the 96p.p.m. solution, the flow rate 
increased continuously as the pressure rose still further. For the other two solu- 
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Bulk velocity (cm/s) 

FIGURE 13. Pressure-drop measurements for fresh (open symbols) and stably degraded 
solutions (solid symbols) of FRA in the 0.022cm bead matrix. The gaps in the 6 and 
24 p,p.m. curves indicate regions in which steady-state measurements couldnot be obtained. 
---,water.FRA: - - - -O- - - - ,  6p.p.m.;-------, 24p.p.m.;-.- A--.-, 96 p.p.m. 

tions, however, the velocity jumped to around 0.4 cm/s and it was found that the 
flow would stabilize a t  the higher flow rate at a pressure below that prior to the 
jump; when the pressure was further increased, the velocity correspondingly rose 
above 0-4cm/s. I n  the region between 0.08 and 0*4cm/s, it was impossible to 
attain steady-state measurements, which is readily understandable from the 
graph since the pressure-flow curve has a negative slope there and the situation 
is inherently unstable. The curve has not been drawn in this region in figure 13 
and is represented by the dashed segments in figures 6 and 7. It should be noted 
here that the same results were obtained when the run started a t  the maximum 
pressure and flow rate and data were recorded as the pressure was reduced. The 
phenomenon arises from the fact that the pressure drop for these nonlinear fluids 
does not necessarily increase monotonically with the flow rate, but apparently 
can be a multi-valued function under some conditions. Hence when the flow is 
driven by a constant head, there is a range of velocities in which steady-state 
measurement’s cannot be made, and a ‘velocity gap ’ appears in the pressure-flow 
curve. 

Similar graphs for other solutions confirmed that the velocity gap appeared 
only when the viscoelastic effect was pronounced and confined to a small velocity 
range, small enough, a t  least, to produce a negative slope in the pressure-flow 
curve. The WSR-205 solutions deviated from Newtonian behaviour only 
moderately and thus their data were always continuous. For flows of the other 
two grades past the 0.045 cm beads, the viscoelastic effect was invariably large 
(as figures 6 and 7 show) but it remained large even at high velocities and conse- 
quently the data for these flows were continuous as well. These two figures also 
indicate that, for the 0.01 1 cm beads, the velocity gap occurred only for the lowest 
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concentration of WSR-301 and FRA. However, when the data for all concentra- 
tions were plotted in dimensional form (like figure 13 but not shown here), it was 
apparent that solutions of higher concentration would also have exhibited this 
effect if the driving pressure had been increased sufficiently. 

Figure 13 suggests that this phenomenon might be caused by degradation, 
since it oecurs when the degree of degradation becomes significant. Yet the data 
for the stably degraded solutions (the solid symbols) have negative slope too, 
indicating that the gap may appear for undegradable, as well as degradable, 
solutions. Consequently, while degradation and the discontinuity may both be 
a result of high flow rates, the two effects do not appear to be related. 

This velocity gap is a new and interesting aspect of the flow of dilute solutions 
through porous media. It is not a general phenomenon, and occurs only when the 
viscoelasticity induced by the flow is pronounced and limited to a short velocity 
range, conditions which are met by dilute high-weight Polyox solutions in media 
with a pore size 0(10-2) cm. 

The authors acknowledge with gratitude the support of this work by the 
National Research Council of Canada, and the assistance of Don Murray in 
reducing the data and visualizing the flow. 
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